Moore-Gibson-Thompson thermoelasticity with two temperatures
نویسندگان
چکیده
منابع مشابه
Chaotic Behaviour of the Solutions of the Moore-Gibson- Thompson Equation
We study a third-order partial differential equation in the form τuttt +αutt −cuxx −buxxt = 0, (1) that corresponds to the one-dimensional version of the Moore-Gibson-Thompson equation arising in high-intensity ultrasound and linear vibrations of elastic structures. In contrast with the current literature on the subject, we show that when the critical parameter γ := α − τc2 b is negative, the e...
متن کاملOn (non-)exponential decay in generalized thermoelasticity with two temperatures
We study solutions for the one-dimensional problem of the Green-Lindsay and the Lord-Shulman theories with two temperatures. First, existence and uniqueness of weakly regular solutions are obtained. Second, we prove the exponential stability in the Green-Lindsay model, but the nonexponential stability for the Lord-Shulman model.
متن کاملExponential decay for low and higher energies in the third order linear Moore-Gibson-Thompson equation with variable viscosity
We consider the Moore-Gibson-Thompson equation which arises, e.g., as a linearization of a model for wave propagation in viscous thermally relaxing fluids. This third order in time equation displays, even in the linear version, a variety of dynamical behaviors for their solutions that depend on the physical parameters in the equation. These range from non-existence [3] and instability to expone...
متن کاملOn the Backward in Time Problem for the Thermoelasticity with Two Temperatures
This paper is devoted to the study of the existence, uniqueness, continuous dependence and spatial behaviour of the solutions for the backward in time problem determined by the Type III with two temperatures thermoelastodynamic theory. We first show the existence, uniqueness and continuous dependence of the solutions. Instability of the solutions for the Type II with two temperatures theory is ...
متن کاملGeneralized Theory of Micropolar-fractional-ordered Thermoelasticity with Two-temperature
In this paper, a new theory of generalized micropolar thermoelasticity is derived by using fractional calculus. The generalized heat conduction equation in micropolar thermoelasticity has been modified with two distinct temperatures, conductive temperature and thermodynamic temperature by fractional calculus which depends upon the idea of the RiemannLiouville fractional integral operators. A un...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Applications in Engineering Science
سال: 2020
ISSN: 2666-4968
DOI: 10.1016/j.apples.2020.100006